
ON THE NONTERMINAL COMPLEXITY OF LEFT RANDOM
CONTEXT E0L GRAMMARS

Petr Zemek
Doctoral Degree Programme (1), FIT BUT

E-mail: xzemek02@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: The present paper studies the nonterminal complexity of left random context E0L gram-
mars. More specifically, it proves that every recursively enumerable language can be generated by a
left random context E0L grammar with nine nonterminals. In the conclusion, some open problems
related to the achieved result are stated.

Keywords: Formal languages, left random context E0L grammars, nonterminal complexity

1 INTRODUCTION

A left random context E0L grammar, introduced in [7]1, is a variant of an E0L grammar regulated by
context conditions (see Chapter 8 of [2]). Basically, it is an E0L grammar where every rewriting rule
is equipped with two finite sets of nonterminals. One set contains permitting symbols while the other
has forbidding symbols. A rule like this can rewrite a symbol provided that each of its permitting
symbols occurs to the left of the rewritten symbol in the current sentential form while each of its
forbidding symbols is absent therein.

As demonstrated by several recent studies, such as [1, 3, 5, 6, 8], the study of descriptional complexity
of formal models represents a modern trend in formal language theory. One of the studied parameter
is the number of nonterminals needed to sustain the power of a grammar. We follow this trend by
showing that every recursively enumerable language can be generated by a left random context E0L
grammar with nine nonterminals.

To demonstrate that the number of nonterminals of a computationally complete grammar can be
bounded, several techniques have been used [1]. In [5] and [8], the authors simulate a phrase-structure
grammar in the Geffert normal form (see [4]), where the number of nonterminals is bounded by a
very small constant. In [3], the number of nonterminals of graph controlled, programmed, and matrix
grammars to generate any recursively enumerable language is reduced by a simulation of a register
machine, which is a Turing machine with integers stored in counters rather than with words written
on tapes. A similar variant of a Turing machine, called two-counter machine, is used in [1] to prove
that every recursively enumerable language can be generated by a scattered context grammar with
only two nonterminals. We use the technique based on the Geffert normal form.

The paper is organized as follows. First, Section 2 gives all the necessary terminology. Then, Sec-
tion 3 proves that every recursively enumerable language can be generated by a left random context
E0L grammar with nine nonterminals. In the conclusion of this paper, Section 4 states two open
problems related to the achieved result.

1Let us note that [7] represents a not yet published work containing ongoing research.



2 PRELIMINARIES

We assume that the reader is familiar with formal language theory (see [9]). For a set, Q, card(Q)
denotes the cardinality of Q, and 2Q denotes the power set of Q. For an alphabet (finite non-empty
set), V , V ∗ represents the free monoid generated by V under the operation of concatenation. The unit
of V ∗ is denoted by ε. Define V+ = V ∗−{ε}. For a string, x ∈ V ∗, |x| denotes the length of x, and
alph(x) denotes the set of symbols occurring in x.

A phrase-structure grammar is a quadruple, G=(N, T , P, S), where N is an alphabet of nonterminals,
T is an alphabet of terminals, N ∩T = /0, S ∈ N is the start symbol, and P ⊆ (N ∪T )∗N(N ∪T )∗×
(N∪T )∗ is a finite relation, called the set of rules. Each (x,y) ∈ P is written as x→ y. Set V = N∪T .
The relation of a direct derivation, symbolically denoted by⇒, is defined as follows: if u,v∈V ∗, and
x→ y ∈ P, then uxv⇒ uyv in G. Let⇒n and⇒∗ denote the nth power of⇒, for some n≥ 0, and the
reflexive-transitive closure of⇒, respectively. The language of G is denoted by L(G) and defined as
L(G) = {w ∈ T ∗ | S⇒∗ w}.

Let G be a phrase-structure grammar. G is in the Geffert normal form (see [4]) if it is of the form
G = ({S, A, B, C}, T , P∪{ABC→ ε}, S), where P contains only rules of the form (i) S→ uSa,
(ii) S→ uSv, (iii) S→ uv, where u ∈ {A,AB}∗, v ∈ {BC,C}∗, and a ∈ T .

Lemma 1 (see [4]). Let K be a recursively enumerable language. Then, there is a phrase-structure
grammar in the Geffert normal form, G, such that L(G) = K. In addition, every successful derivation
in G is of the form S⇒∗ w1w2w3 by rules from P, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w3 ∈ T ∗, and
w1w2w3⇒∗ w3 is derived by ABC→ ε.

A left random context E0L grammar (see [7]) is a quadruple, G = (V , T , P, w), where V is the total
alphabet, T ⊆V is an alphabet of terminals, N =V −T is an alphabet of nonterminals, w ∈V+ is the
start string, and P⊆V×V ∗×2N×2N is finite. By analogy with phrase-structure grammars, elements
of P are called rules and instead of (X ,y,U,W ) ∈ P, we write bX → y,U,Wc. The relation of a
direct derivation, symbolically denoted by⇒, is defined as follows: if u = X1X2 · · ·Xk, v = y1y2 · · ·yk,
bXi→ yi,Ui,Wic ∈ P, Ui ⊆ alph(X1X2 · · ·Xi−1), and alph(X1X2 · · ·Xi−1)∩Wi = /0, for all i, 1 ≤ i ≤ k,
for some k ≥ 1, then u⇒ v in G. For bX → y,U,Wc ∈ P, U and W are called the left permitting
context and the left forbidding context, respectively. Let⇒n and⇒∗ denote the nth power of⇒, for
some n≥ 0, and the reflexive-transitive closure of⇒, respectively. The language of G is denoted by
L(G) and defined as L(G) = {x ∈ T ∗ | w⇒∗ x}.

3 MAIN RESULT

In this section, we prove that every recursively enumerable language can be generated by a left random
context E0L grammar with nine nonterminals.

Theorem 1. Let K be a recursively enumerable language. Then, there is a left random context E0L
grammar, H = (V , T , P, w), such that L(H) = K and card(N) = 9.

Proof. Let K be a recursively enumerable language. Then, by Lemma 1, there is a phrase-structure
grammar in the Geffert normal form, G = ({S, A, B, C}, T , P∪{ABC→ ε}, S), such that L(G) = K.
We next construct a left random context E0L grammar, H, such that L(H) = L(G). Set N = {S, A,
B, C}, V = {S,A,B,C}∪T , and N′ = N ∪{Ā, Â, B̄, B̂, #}. Define H = (V ′,T,P′,S#), where initially
V ′ = N′ ∪T and P′ = {ba→ a, /0, /0c | a ∈ T}∪{bX → X , /0, {#}c | X ∈ {A, B, C}}. To finish the
construction, apply the following six steps:

(1) add b#→ #, /0, {Ā, B̄, Â, B̂}c, b#→ #, {Â, B̂, C}, {S}}c, and b#→ ε, /0, N′−{#}c to P′;



(2) for each S→ uSa ∈ P, where u ∈ {A,AB}∗ and a ∈ T ,
add bS→ uS#a, /0, {Ā, B̄, Â, B̂, #}c to P′;

(3) for each S→ uSv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,
add bS→ uSv, /0,{Ā, B̄, Â, B̂,#}c to P′;

(4) for each S→ uv ∈ P, where u ∈ {A,AB}∗ and v ∈ {BC,C}∗,
add bS→ uv, /0, {Ā, B̄, Â, B̂, #}c to P′;

(5) add bA→ Ā, /0, {S, Ā, B̄, Â, B̂, #}c, bB→ B̄, /0, {S, Ā, B̄, Â, B̂, #}c, bA→ Â, /0, {S, Ā, B̄, Â, B̂,
#}c, and bB→ B̂, /0, {S, Ā, B̄, Â, B̂, #}c to P′;

(6) add bĀ→ A, /0, {S, A, B, C, Â, B̂, #}c, bB̄→ B, /0, {S, A, B, C, Â, B̂, #}c, bÂ→ ε, /0, {S, A, B, C,
Â, B̂, #}c, bB̂→ ε, {Â}, {S, A, B, C, B̂, #}c, bC→ ε, {Â, B̂}, {S, A, B, C, #}c to P′.

H simulates derivations of the form specified in Lemma 1. Rules in P are simulated by rules from (2)
through (4). ABC→ ε is simulated in two steps. First, rules introduced in (5) are used to prepare the
application of rules from (6). Then, the latter rules perform the actual erasure of ABC. For example,
AABCBC#a#⇒ ĀÂB̂CBC#a#⇒ ABC#a# in H.

The role of # is twofold. First, it ensures that every sentential form of H is of the form w1w2, where
w1 ∈ (N′−{#})∗ and w2 ∈ (T ∪ {#})∗. Since left permitting and left forbidding contexts cannot
contain terminals, a mixture of symbols from T and N in H could lead to false sentences. Second, if
any of Ā, B̄, Â, or B̂ are present, ABC→ ε has to be simulated. Therefore, it prevents derivations of
the form Aa⇒ Âa⇒ a in H (notice that the start string of H is S#). Furthermore, we exploit the fact
that in every derivation step of H, all symbols have to be rewritten. Consequently, if rules from (5)
are used improperly, the derivation is blocked, and so no partial erasures are possible.

Observe that every sentential form of G and H contains at most one occurrence of S. In a derivation
step of H, only a single rule from P∪ {ABC → ε} can be simulated at once. ABC → ε can be
simulated only if S is not present. #’s can be eliminated in a single step by an application of rules
from (1); however, only if there are no nonterminals present in the current sentential form. Based
on these observations and on Lemma 1, we see that every successful derivation in H is of the form
S#⇒∗ w1w2#a1#a2 · · ·#an#⇒∗ #a1#a2 · · ·#an#⇒ a1a2 · · ·an, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗,
ai ∈ T , for all i, 1≤ i≤ n, for some n≥ 0.

Due to space requirements, we omit some details in what follows. The reader can easily fill them
in. To establish L(H) = L(G), we prove two claims. The first claim shows how derivations of G are
simulated by H. It is then used to prove L(G) ⊆ L(H). Define the homomorphism ϕ from V ∗ to V ′∗

as ϕ(X) = X , for all X ∈ N, and ϕ(a) = #a, for all a ∈ T .

Claim 1. If S⇒n x⇒∗ z in G, for some n≥ 0, where x ∈V ∗, z ∈ T ∗, then S#⇒∗ ϕ(x)# in H.

Proof. This claim is established by induction on n, where n≥ 0. Basis: For n = 0, the claim clearly
holds. Induction Hypothesis: Suppose that the claim holds for all derivations of length l or less,
where l ≤ n, for some n ≥ 0. Induction Step: Consider any derivation of the form S⇒n+1 w⇒∗ z
in G, where w ∈ V ∗, z ∈ T ∗. Since n+1 ≥ 1, this derivation can be expressed as S⇒n x⇒ w⇒∗ z,
for some x ∈ V ∗. Without any loss of generality, we may assume that x = x1x2x3x4, where x1 ∈ {A,
AB}∗, x2 ∈ {S, ε}, x3 ∈ {BC, C}∗, and x4 ∈ T ∗ (see Lemma 1 and [4]). Next, we consider all possible
forms of x⇒ w in G, covered by the following four cases—(i) through (iv).

(i) (Application of S → uSa ∈ P.) Let x = x1Sx3x4, w = x1uSax3x4, and S → uSa ∈ P, where
u ∈ {A, AB}∗ and a ∈ T . Then, by the induction hypothesis, S#⇒∗ ϕ(x1Sx3x4)# in H. By (2),
bS→ uS#a, /0, {Ā, B̄, Â, B̂, #}c ∈ P′. Since ϕ(x1Sx3x4)# = x1Sx3ϕ(x4)# and alph(x1Sx3)∩{Ā,



B̄, Â, B̂, #} = /0, x1Sx3ϕ(x4)#⇒ x1uS#ax3ϕ(x4)# in H. As ϕ(x1uSax3x4)# = x1uS#ax3ϕ(x4)#,
the induction step is completed for (i).

(ii) (Application of S→ uSv∈ P.) Let x = x1Sx3x4, w= x1uSvx3x4, and S→ uSv∈ P, where u∈ {A,
AB}∗ and v ∈ {BC, C}∗. Proceed by analogy with (i) by using a rule from (3).

(iii) (Application of S→ uv ∈ P.) Let x = x1Sx3x4, w = x1uvx3x4, and S→ uv ∈ P, where u ∈ {A,
AB}∗ and v ∈ {BC, C}∗. Proceed by analogy with (i) by using a rule from (4).

(iv) (Application of ABC→ ε.) Let x = x′1ABCx′3x4, w = x′1x′3x4, where x1x2 = x′1ABCx′2, so x⇒ w
in G by ABC→ ε. Then, by the induction hypothesis, S#⇒∗ ϕ(x′1ABCx′3x4)# in H. Let x′1 =
X1X2 · · ·Xk, where k = |x′1|. Since ϕ(x′1ABCx′3x4)# = x′1ABCx′3ϕ(x4)# and alph(x′1ABCx′3)∩{Ā,
B̄, Â, B̂, #} = /0, x′1ABCx′3ϕ(x4)# ⇒ x̄′1ÂB̂Cx′3ϕ(x4)# in H by rules from (5), where x̄′1 =
X̄1X̄2 · · · X̄k. Since alph(x̄′1)∩{S, A, B, C, Â, B̂, #} = /0, Â ∈ alph(x̄′1Â), Â, B̂ ∈ alph(x̄′1ÂB̂), and
Â, B̂,C∈ alph(x̄′1ÂB̂Cx2), x̄′1ÂB̂Cx′3ϕ(x4)#⇒ x′1x′3ϕ(x4)# in H by rules from (6). As ϕ(x′1x′3x4)#=
x′1x′3ϕ(x4)#, the induction step is completed for (iv).

Observe that these four cases cover all possible forms of x⇒ w in G, so the claim holds.

The second claim demonstrates how G simulates derivations of H. It is then used to prove L(H) ⊆
L(G). Define the homomorphism τ from V ′∗ to V ∗ as τ(X) = X , for all X ∈ N, τ(Ā) = τ(Â) = A,
τ(B̄) = τ(B̂) = B, τ(a) = a, for all a ∈ T , and τ(#) = ε.

Claim 2. If S#⇒n x⇒∗ z in H, for some n≥ 0, where x ∈V ′∗, z ∈ T ∗, then S⇒∗ τ(x) in G.

Proof. This claim is established by induction on n, where n≥ 0. Basis: For n = 0, the claim clearly
holds. Induction Hypothesis: Suppose that the claim holds for all derivations of length l or less, where
l ≤ n, for some n ≥ 0. Induction Step: Consider any derivation of the form S#⇒n+1 w⇒∗ z in H,
where w ∈ V ′∗, z ∈ T ∗. Since n+ 1 ≥ 1, this derivation can be expressed as S#⇒n x⇒ w⇒∗ z, for
some x ∈ V ′∗. By the induction hypothesis, S⇒∗ τ(x) in G. Next, we consider all possible forms of
x⇒ w in H, covered by the following five cases—(i) through (v).

(i) Let x = x1Sx2 and w = x′1uS#ax′2, where x1,x′1,x2,x′2 ∈ V ′∗, such that x1Sx2 ⇒ x′1uS#ax′2 in H
by bS→ uS#a, /0, {Ā, B̄, Â, B̂, #}c—introduced in (2) from S→ uSa ∈ P, where u ∈ {A,AB}∗,
a∈ T —and by the rules introduced in the initialization part, in (1), and in (5). Since τ(x1Sx2) =
τ(x1)Sτ(x2), τ(x1)Sτ(x2)⇒ τ(x1)uSaτ(x2) in G. As τ(x1)uSaτ(x2)= τ(x′1uS#ax′2), the induction
step is completed for (i).

(ii) Let x = x1Sx2 and w = x′1uSvx′2, where x1,x′1,x2,x′2 ∈ V ′∗, such that x1Sx2⇒ x′1uSvx′2 in H by
bS→ uSv, /0, {Ā, B̄, Â, B̂, #}c—introduced in (3) from S→ uSv ∈ P, where u ∈ {A,AB}∗,
v ∈ {BC, C}∗—and by the rules introduced in the initialization part and in (1) and (5). Proceed
by analogy with (i).

(iii) Let x = x1Sx2 and w = x′1uvx′2, where x1,x′1,x2,x′2 ∈ V ′∗, such that x1Sx2 ⇒ x′1uvx′2 in H by
bS→ uv, /0, {Ā, B̄, Â, B̂, #}c—introduced in (4) from S→ uv∈ P, where u∈ {A,AB}∗, v∈ {BC,
C}∗—and by the rules introduced in the initialization part and in (1) and (5). Proceed by
analogy with (i).

(iv) Let x = x1Âx2B̂x3Cx4 and w = x′1x′2x′3x′4, where x1, x′1, x2, x′2, x3, x′3, x4, x′4 ∈ V ′∗, such that
x1Âx2B̂x3Cx4 ⇒ x′1x′2x′3x′4 in H by rules introduced in (6), in the initialization part, and in (1)
and (5). Observe that x2 = x′2 = x3 = x′3 = ε, alph(x1x3)∩{Â, B̂}= /0, and the only occurrence
of C that is erased is the one right next to B̄; otherwise, this derivation in H is not possible.



Therefore, x = x1ÂB̂Cx4 and w = x′1x′4. Since τ(x1ÂB̂Cx4) = τ(x1)ABCτ(x4), τ(x1)ABCτ(x4)⇒
τ(x1)τ(x4) by ABC→ ε in G. As τ(x1)τ(x4) = τ(x′1x′4), the induction step is completed for (iv).

(v) Let x⇒ w in H only by rules from the initialization part, from (1), from (5), and by the first
two rules from (6). As τ(x) = τ(w), the induction step is completed for (v).

Observe that these five cases cover all possible forms of x⇒ w in H, so the claim holds.

We now prove that L(H) = L(G). Consider a special case of Claim 1 when x∈ T ∗. Then, S#⇒∗ ϕ(x)#
in H. By (1), b#→ ε, /0, N′−{#}c ∈ P′. Since alph(ϕ(x)#)∩ (N′−{#}) = /0, ϕ(x)#⇒ x in H.
Hence, L(G) ⊆ L(H). Consider a special case of Claim 2 when x ∈ T ∗. Then, S⇒∗ x in G. Hence,
L(H)⊆ L(G). As card(N′) = 9, the theorem holds.

4 CONCLUSION

The present paper demonstrated that every recursively enumerable language can be generated by a
left random context E0L grammar with nine nonterminals. A question to be investigated is whether
this bound is, in fact, optimal. Furthermore, in [7], it is proved that left random context E0L grammars
without erasing rules—that is, without any rules of the form X → ε—generate precisely the family
of context-sensitive languages. Can we also bound the number of nonterminals in terms of this non-
erasing version? We suggest these two open problems for further research.

ACKNOWLEDGEMENT

This work was supported by the research plan MSM0021630528.

REFERENCES

[1] E. Csuhaj-Varjú and G. Vaszil. Scattered context grammars generate any recursively enumerable
language with two nonterminals. Information Processing Letters, 110:902–907, 2010.

[2] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer, 1989.

[3] H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refining the nonterminal complexity of
graph-controlled, programmed, and matrix grammars. Journal of Automata, Languages and
Combinatorics, 12(1–2):117–138, 2007.

[4] V. Geffert. Normal forms for phrase-structure grammars. Theoretical Informatics and
Applications, 25(5):473–496, 1991.

[5] T. Masopust. On the descriptional complexity of scattered context grammars. Theoretical
Computer Science, 410(1):108–112, 2009.

[6] T. Masopust and A. Meduna. On descriptional complexity of partially parallel grammars.
Fundamenta Informaticae, 87(3):407–415, 2008.

[7] A. Meduna and P. Zemek. Left random context ET0L grammars. manuscript.

[8] F. Okubo. A note on the descriptional complexity of semi-conditional grammars. Information
Processing Letters, 110(1):36–40, 2009.

[9] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Volumes 1 through 3.
Springer, 1997.


